Skip to main content

Unique Clock Finally Unites Hackers and Sequins

We’ve all seen the two-color sequin fabrics you can “draw” on by dragging your finger over so the pieces flip to the other color. It’s fun stuff to play with, and very popular with the kids right now, but if you asked us if the material had any practical application we’d have said no. But that was before we saw this clever clock created by [Ekaggrat Singh Kalsi] that he calls Sequino.

Since a clock (at least one that only shows hours and minutes) doesn’t need to refresh very quickly, [Ekaggart] thought that the sequin material could work as a display. Of course the tricky part is figuring out how to actually draw on it reliably. It can’t be done from the back, and since the sequins are plastic, you can’t use a magnet. The only way to do it is with a robotic “finger” and some very slick kinematics.

The most obvious feature of the Sequino is the belt drive that goes the length of its cylindrical shape. When the two motors connected to the belt are turning in the same direction, the pointer is moved left or right. But when the motors turn in opposite directions, the tension on the belt forces the pointer to extend and contact the sequins. It’s like an H-bot , but with the shortest ever Y axis. The front bar is moved up and down with rotating rings inside of the device. It will probably make a lot more sense once you watch the video of it in operation after the break.

[Ekaggrat] says this project was developed as part of his quest to build “doodle clocks” that draw out the time continuously. The advantage of using the sequin fabric is that it shouldn’t be damaged by repetitive use, an issue he’s tried to solve via photonic means in the past.



from Hackaday https://ift.tt/2GBvCYt

Comments

Popular posts from this blog

How To Play Doom – And More – On An NES

Doom was a breakthrough game for its time, and became so popular that now it’s essentially the “Banana For Scale” of hardware hacking. Doom has been ported to countless devices, most of which have enough processing ability to run the game natively. Recently, this lineup of Doom-compatible devices expanded to include the NES even though the system definitely doesn’t have enough capability to run it without special help. And if you want your own Doom NES cartridge, this video will show you how to build it . We featured the original build from [TheRasteri] a while back which goes into details about how it’s possible to run such a resource-intensive game on a comparatively weak system. You just have to enter the cheat code “RASPI”. After all the heavy lifting is done, it’s time to put it into a realistic-looking cartridge. To get everything to fit in the donor cartridge, first the ICs in the cartridge were removed (except the lockout IC) and replaced with custom ROM chips. Some modifica...

The Flexible Permanence of Copper Tape Circuits

Somewhere between shoving components into a breadboard temporarily and committing them to a piece of protoboard or a PCB lies the copper tape method. This flexible Manhattan-style method of circuitry formed the basis for [Bunnie Huang]’s Chibitronics startup, and has since inspired many to stop etching boards and start fetching hoards of copper tape. [Hales] hit the ground running when he learned about this method , and has made many a copper tape circuit in the last year or so. He offers several nice tips on his site that speak from experience with this method, and he’ll even show you how to easily work an SMD breakout board into the mix. Generally speaking, [Hales] prefers plywood as the substrate to paper or cardboard for durability. He starts by drawing out the circuit and planning where all the tape traces will go and how wide they need to be. Then he lays out copper traces and pads, rubs the tape against the substrate to make it adhere strongly, and reinforces joints and laps w...

The Newbie’s Guide To JTAG

Do you even snarf? If not, it might be because you haven’t mastered the basics of JTAG and learned how to dump, or snarf, the firmware of an embedded device. This JTAG primer will get you up to snuff on snarfing, and help you build your reverse engineering skills. Whatever your motivation for diving into reverse engineering devices with microcontrollers, JTAG skills are a must, and [Sergio Prado]’s guide will get you going. He starts with a description and brief history of the Joint Test Action Group interface, from its humble beginnings as a PCB testing standard to the de facto standard for testing, debugging, and flashing firmware onto devices. He covers how to locate the JTAG pads – even when they’ve been purposely obfuscated – including the use of brute-force tools like the JTAGulator . Once you’ve got a connection, his tutorial helps you find the firmware in flash memory and snarf it up to a file for inspection, modification, or whatever else you have planned. We always apprec...