Skip to main content

Sonic The Hedgehog Self-Balancing Robot Can Bend At The Knees

Building your own self-balancing robot is a rite of passage for anyone getting into the field of robotics. Master of robots, [James Bruton] has been there, done that, and collected a few T-shirts. Now he’s building a large Sonic the Hedgehog self balancing robot that can bend at the knees and hip, allowing it to lean while turning and handle uneven terrain. Check out the first video embedded after the break.

Standing about 1 m tall, the robot is inspired by Boston Dynamic’s box handling bot, Handle. It’s “skeleton” consists of 20×20 aluminium extrusions, bolted together using a bunch of 3D printed fittings in the signature blue and red of Sonic. The wheels and tyres are also 3D printed, and driven by brushless motor via a toothed belt. The knee/hip mechanism is actuated using a ball screw, also driven by a brushless motor.

[James] intends to implement an active shock absorption system into the leg mechanism, using the same technique he tried on his OpenDog robot. It works by bolting a load cell onto one of the leg extrusion to sense when it flexes under load, and then actuating the knee mechanism to absorb the force. His first version of the system on OpenDog used PWM signals to send the load cell data to the main controller, but the motors on the legs induced enough noise in the signal wires to make it unusable. He has since started experimenting with the CAN bus protocol, which was specifically designed to work reliably in noisy systems like modern automobiles. If he gets it working on the two legs of this Sonic robot, he plans to also implement it on the quadruped OpenDog.

This is another very ambitious project from [James], and we’re really looking forward to the next instalments. With a bunch of complex projects under his belt, like a series of  full size Star Wars robots, we have high hopes for success.



from Hackaday https://ift.tt/2S4JQXk

Comments

Popular posts from this blog

How To Play Doom – And More – On An NES

Doom was a breakthrough game for its time, and became so popular that now it’s essentially the “Banana For Scale” of hardware hacking. Doom has been ported to countless devices, most of which have enough processing ability to run the game natively. Recently, this lineup of Doom-compatible devices expanded to include the NES even though the system definitely doesn’t have enough capability to run it without special help. And if you want your own Doom NES cartridge, this video will show you how to build it . We featured the original build from [TheRasteri] a while back which goes into details about how it’s possible to run such a resource-intensive game on a comparatively weak system. You just have to enter the cheat code “RASPI”. After all the heavy lifting is done, it’s time to put it into a realistic-looking cartridge. To get everything to fit in the donor cartridge, first the ICs in the cartridge were removed (except the lockout IC) and replaced with custom ROM chips. Some modifica...

Try NopSCADlib for your Next OpenSCAD Project

Most readers of this site are familiar by now with the OpenSCAD 3D modeling software, where you can write code to create 3D models. You may have even used OpenSCAD to output some STL files for your 3D printer. But for years now, [nophead] has been pushing OpenSCAD further than most, creating some complex utility and parts libraries to help with modeling, and a suite of Python scripts that generate printable STLs, laser-ready DXFs, bills of material, and human-readable assembly instructions complete with PNG imagery of exploded-view sub-assemblies. Recently [nophead] tidied all of this OpenSCAD infrastructure up and released it on GitHub as NopSCADlib . You can find out more by browsing through the example projects and README file in the repository, and by reading the announcement blog post on the HydraRaptor blog . Some functionality highlights include: a large parts library full of motors, buttons, smooth rod, et cetera many utility functions to help with chamfers, fillets, precis...

The Newbie’s Guide To JTAG

Do you even snarf? If not, it might be because you haven’t mastered the basics of JTAG and learned how to dump, or snarf, the firmware of an embedded device. This JTAG primer will get you up to snuff on snarfing, and help you build your reverse engineering skills. Whatever your motivation for diving into reverse engineering devices with microcontrollers, JTAG skills are a must, and [Sergio Prado]’s guide will get you going. He starts with a description and brief history of the Joint Test Action Group interface, from its humble beginnings as a PCB testing standard to the de facto standard for testing, debugging, and flashing firmware onto devices. He covers how to locate the JTAG pads – even when they’ve been purposely obfuscated – including the use of brute-force tools like the JTAGulator . Once you’ve got a connection, his tutorial helps you find the firmware in flash memory and snarf it up to a file for inspection, modification, or whatever else you have planned. We always apprec...