Skip to main content

Turning Sounds from a Flute Into Sheet Music

Composing music can be quite difficult – after all, you have to keep in mind all of the elements of musical theory, from time signature and key signature to the correct length for all of the notes. A team of students from Cornell University’s Designing with Microcontrollers class developed a solution for this problem by transcribing sounds from a flute into sheet music.

The project doesn’t simply detect the notes played – it is able to convert the raw audio into a standardized music score complete with accurate note timings and beats per minute. Before transcribing the music, some audio processing was necessary. The team chose to use a Sallen-Key filter to amplify the raw audio input due to its complex conjugate poles. They then used a fast Fourier Transform (FFT) to determine the frequency for the input note, converting the signal from the time domain to the frequency domain.

The algorithm samples the data to generate an input signal, using the ADC on the microcontroller to receive input from the microphone. It takes the real and imaginary components of the sampled signals and outputs a pair of real and imaginary amplitude components corresponding to the sampled frequency, evenly spaced from 0 to the Nyquist rate (half the sampling rate). The spacing of these bins and the bin with the largest amplitude are used to convert the signal back to a real frequency and a MIDI note.

The system uses a PIC32 for the logic. The circuitry for the microphone amplification uses a non-inverting op-amp with a gain of 50 to increase the microphone output signal amplitude from 15 mV to 750 mV to use by the microcontroller’s ADC. The signal is then sent to the anti-aliasing Sallen-Key filter, with a pole at 2.5 kHz and a Q of 1. The frequency was chosen since the FFT samples at 8 kHz and the frequency corresponds to a note out of the range of a flute. As for the filters, only the low pass filter was implemented in hardware.  While a bandpass filter could have been implemented in hardware, the team decided on a cleaner software approach.

The project is well-documented on the team’s project page, and it’s certainly worth checking out for more detailed discussions on the keypad controls and the software side of the audio processing. If you want to learn more about the FFT, check out this 2016 Hackaday Prize entry for an FFT spectrum analyezer.



from Hackaday https://ift.tt/2SBKcX3

Comments

Popular posts from this blog

Bill Gates steps down from Microsoft’s board to focus on philanthropy

In an announcement on Friday, Microsoft revealed that company co-founder Bill Gates has decided to step down from his role on its Board of Directors in order to focus on his philanthropic efforts at the Bill & Melinda Gates Foundation. This is Gate’s biggest change to his role at Microsoft since stepping down as company chairman in February 2014. According … Continue reading from SlashGear https://ift.tt/2We90Gu

World Economic Forum launches Global AI Council to address governance gaps

The World Economic Forum is creating a series of councils that create policy recommendations for use of things like AI, blockchain, and precision medicine. Read More from VentureBeat http://bit.ly/2EKBjD4

A Mini USB Keyboard That Isn’t A Keyboard

A useful add-on for any computer is a plug-in macro keyboard, a little peripheral that adds those extra useful buttons to automate tasks. [ Sayantan Pal] has made one, a handy board with nine programmable keys and a USB connector, but the surprise is that at its heart lies only the ubiquitous ATmega328 that you might find in an Arduino Uno. This isn’t a USB HID keyboard, instead it uses a USB-to-serial chip and appears to the host computer as a serial device. The keys themselves are simple momentary action switches, perhaps a deluxe version could use key switches from the likes of Cherry or similar. The clever part of this build comes on the host computer, which runs some Python code using the PyAutoGui library. This allows control of the keyboard and mouse, and provides an “in” for the script to link serial and input devices. Full configurability is assured through the Python code, and while that might preclude a non-technical user from gaining its full benefit it’s fair to say that ...