Skip to main content

Honeywell May Pull into the Quantum Computer Lead

It has been a while since we thought about computers and thought about Honeywell. Sure, they had a series of computers they bought from General Electric and Computer Control Company in the 1970s. Even before that they joined with Raytheon and produced vacuum tube computers that later morphed into transistor-based computers. But in recent years, you are more likely to think of Honeywell for thermostats, air filters, and industrial controls. But now, Honeywell has come out of the computer shadows with some impressive quantum computer hardware and they clearly have big plans.

Comparing quantum computers is a bit dicey just as, for example, judging CPUs by instructions per second has its problems. In the past, vendors have jockeyed for the maximum number of qubits, but that’s misleading in some cases. Processing power depends on the number of qubits, their quality, and how they are connected. IBM introduced the idea of quantum volume and Honeywell claims their new machine will hit 64 by that measure, twice that of anyone else’s quantum computer that we know about.

What’s more, is they’ve promised to increase the volume by a factor of ten each year. The company plans to make their computers available via the Microsoft cloud.

According to Honeywell, their use of trapped ion qubits is superior to other computers that use some indirect method which is more prone to noise. Of course, the computer operates in an exotic environment, which Honeywell is used to handling.

Want to know more about quantum computing? Check out our series using (mostly) Quirk. Who knows? You might be able to build your own one day.



from Hackaday https://ift.tt/38TcGjE

Comments

Popular posts from this blog

How To Play Doom – And More – On An NES

Doom was a breakthrough game for its time, and became so popular that now it’s essentially the “Banana For Scale” of hardware hacking. Doom has been ported to countless devices, most of which have enough processing ability to run the game natively. Recently, this lineup of Doom-compatible devices expanded to include the NES even though the system definitely doesn’t have enough capability to run it without special help. And if you want your own Doom NES cartridge, this video will show you how to build it . We featured the original build from [TheRasteri] a while back which goes into details about how it’s possible to run such a resource-intensive game on a comparatively weak system. You just have to enter the cheat code “RASPI”. After all the heavy lifting is done, it’s time to put it into a realistic-looking cartridge. To get everything to fit in the donor cartridge, first the ICs in the cartridge were removed (except the lockout IC) and replaced with custom ROM chips. Some modifica...

Bill Gates steps down from Microsoft’s board to focus on philanthropy

In an announcement on Friday, Microsoft revealed that company co-founder Bill Gates has decided to step down from his role on its Board of Directors in order to focus on his philanthropic efforts at the Bill & Melinda Gates Foundation. This is Gate’s biggest change to his role at Microsoft since stepping down as company chairman in February 2014. According … Continue reading from SlashGear https://ift.tt/2We90Gu

The Flexible Permanence of Copper Tape Circuits

Somewhere between shoving components into a breadboard temporarily and committing them to a piece of protoboard or a PCB lies the copper tape method. This flexible Manhattan-style method of circuitry formed the basis for [Bunnie Huang]’s Chibitronics startup, and has since inspired many to stop etching boards and start fetching hoards of copper tape. [Hales] hit the ground running when he learned about this method , and has made many a copper tape circuit in the last year or so. He offers several nice tips on his site that speak from experience with this method, and he’ll even show you how to easily work an SMD breakout board into the mix. Generally speaking, [Hales] prefers plywood as the substrate to paper or cardboard for durability. He starts by drawing out the circuit and planning where all the tape traces will go and how wide they need to be. Then he lays out copper traces and pads, rubs the tape against the substrate to make it adhere strongly, and reinforces joints and laps w...