Skip to main content

Firefox to enable DNS-over-HTTPS by default to US users

Mozilla will bring its new DNS-over-HTTPS security feature to all Firefox users in the U.S. by default in the coming weeks, the browser maker has confirmed.

It follows a year-long effort to test the new security feature, which aims to make browsing the web more secure and private.

Whenever you visit a website — even if it’s HTTPS enabled — the DNS query that converts the web address into an IP address that computers can read is usually unencrypted. DNS-over-HTTPS, or DoH, encrypts the request so that it can’t be intercepted or hijacked in order to send a user to a malicious site.

These unencrypted DNS queries can also be used to snoop on which websites a user visits.

DoH works at the app-level, and is baked into Firefox. The feature relies on sending DNS queries to third-party providers — such as Cloudflare and NextDNS — both of which will have their DoH offering baked into Firefox and will process DoH queries.

But the move is not without controversy. Last year, an internet industry group branded Mozilla an “internet villain” for pressing ahead the security feature. The trade group claimed it would make it harder to spot terrorist materials and child abuse imagery. But even some in the security community are split, amid warnings that it could make incident response and malware detection more difficult.

The move to enable DoH by default will no doubt face resistance, but browser makers have argued it’s not a technology that browser makers have shied away from. Firefox became the first browser to implement DoH — with others, like Chrome, Edge, and Opera — quickly following suit.

Firefox said users outside of the U.S. can also enable DoH, just as users inside the U.S. can choose to disable it. Mozilla also said it plans to expand to other DoH providers and regions.



from TechCrunch https://ift.tt/2PokBys

Comments

Popular posts from this blog

How To Play Doom – And More – On An NES

Doom was a breakthrough game for its time, and became so popular that now it’s essentially the “Banana For Scale” of hardware hacking. Doom has been ported to countless devices, most of which have enough processing ability to run the game natively. Recently, this lineup of Doom-compatible devices expanded to include the NES even though the system definitely doesn’t have enough capability to run it without special help. And if you want your own Doom NES cartridge, this video will show you how to build it . We featured the original build from [TheRasteri] a while back which goes into details about how it’s possible to run such a resource-intensive game on a comparatively weak system. You just have to enter the cheat code “RASPI”. After all the heavy lifting is done, it’s time to put it into a realistic-looking cartridge. To get everything to fit in the donor cartridge, first the ICs in the cartridge were removed (except the lockout IC) and replaced with custom ROM chips. Some modifica...

Try NopSCADlib for your Next OpenSCAD Project

Most readers of this site are familiar by now with the OpenSCAD 3D modeling software, where you can write code to create 3D models. You may have even used OpenSCAD to output some STL files for your 3D printer. But for years now, [nophead] has been pushing OpenSCAD further than most, creating some complex utility and parts libraries to help with modeling, and a suite of Python scripts that generate printable STLs, laser-ready DXFs, bills of material, and human-readable assembly instructions complete with PNG imagery of exploded-view sub-assemblies. Recently [nophead] tidied all of this OpenSCAD infrastructure up and released it on GitHub as NopSCADlib . You can find out more by browsing through the example projects and README file in the repository, and by reading the announcement blog post on the HydraRaptor blog . Some functionality highlights include: a large parts library full of motors, buttons, smooth rod, et cetera many utility functions to help with chamfers, fillets, precis...

The Newbie’s Guide To JTAG

Do you even snarf? If not, it might be because you haven’t mastered the basics of JTAG and learned how to dump, or snarf, the firmware of an embedded device. This JTAG primer will get you up to snuff on snarfing, and help you build your reverse engineering skills. Whatever your motivation for diving into reverse engineering devices with microcontrollers, JTAG skills are a must, and [Sergio Prado]’s guide will get you going. He starts with a description and brief history of the Joint Test Action Group interface, from its humble beginnings as a PCB testing standard to the de facto standard for testing, debugging, and flashing firmware onto devices. He covers how to locate the JTAG pads – even when they’ve been purposely obfuscated – including the use of brute-force tools like the JTAGulator . Once you’ve got a connection, his tutorial helps you find the firmware in flash memory and snarf it up to a file for inspection, modification, or whatever else you have planned. We always apprec...