Skip to main content

Tiny Forklift Makes Unusable Space Usable

Houses with crawlspaces are fairly common in some geographic regions. The crawlspace can make it easier to access things like plumbing and electrical wiring, and can even be used as storage in homes that don’t (or can’t) have a basement. Along with improved building ventilation, these some of the perks compared to homes built on a solid slab of concrete. These crawlspaces aren’t exactly easy to get around in, though, but [Dave] has an easier way to get stuff in and out of these useful, but small, spaces.

Enter the crawl space forklift. Made with largely off-the-shelf components, the robot includes a few standard motors and linear actuators to move around and operate the front fork. That’s all pretty standard, but this build really shines with its use of FPV camera, monitor, and transmitter that allow the pilot to navigate the robot in the small space using remote control. For those safety-conscious among us, there is also a fire extinguisher ball on board which self-activates in case the robot catches on fire under his house.

This is a great, high-quality build that shows how common parts can make something revolutionary with the right idea. Identifying a problem and then building a solution, while not forgetting to spring for some safety equipment, can really make a difference even with something as simple as unoccupied space in a home. They can tackle tasks around the home, too.



from Hackaday http://bit.ly/2Wf0ZCl

Comments

Popular posts from this blog

How To Play Doom – And More – On An NES

Doom was a breakthrough game for its time, and became so popular that now it’s essentially the “Banana For Scale” of hardware hacking. Doom has been ported to countless devices, most of which have enough processing ability to run the game natively. Recently, this lineup of Doom-compatible devices expanded to include the NES even though the system definitely doesn’t have enough capability to run it without special help. And if you want your own Doom NES cartridge, this video will show you how to build it . We featured the original build from [TheRasteri] a while back which goes into details about how it’s possible to run such a resource-intensive game on a comparatively weak system. You just have to enter the cheat code “RASPI”. After all the heavy lifting is done, it’s time to put it into a realistic-looking cartridge. To get everything to fit in the donor cartridge, first the ICs in the cartridge were removed (except the lockout IC) and replaced with custom ROM chips. Some modifica...

The Flexible Permanence of Copper Tape Circuits

Somewhere between shoving components into a breadboard temporarily and committing them to a piece of protoboard or a PCB lies the copper tape method. This flexible Manhattan-style method of circuitry formed the basis for [Bunnie Huang]’s Chibitronics startup, and has since inspired many to stop etching boards and start fetching hoards of copper tape. [Hales] hit the ground running when he learned about this method , and has made many a copper tape circuit in the last year or so. He offers several nice tips on his site that speak from experience with this method, and he’ll even show you how to easily work an SMD breakout board into the mix. Generally speaking, [Hales] prefers plywood as the substrate to paper or cardboard for durability. He starts by drawing out the circuit and planning where all the tape traces will go and how wide they need to be. Then he lays out copper traces and pads, rubs the tape against the substrate to make it adhere strongly, and reinforces joints and laps w...

The Newbie’s Guide To JTAG

Do you even snarf? If not, it might be because you haven’t mastered the basics of JTAG and learned how to dump, or snarf, the firmware of an embedded device. This JTAG primer will get you up to snuff on snarfing, and help you build your reverse engineering skills. Whatever your motivation for diving into reverse engineering devices with microcontrollers, JTAG skills are a must, and [Sergio Prado]’s guide will get you going. He starts with a description and brief history of the Joint Test Action Group interface, from its humble beginnings as a PCB testing standard to the de facto standard for testing, debugging, and flashing firmware onto devices. He covers how to locate the JTAG pads – even when they’ve been purposely obfuscated – including the use of brute-force tools like the JTAGulator . Once you’ve got a connection, his tutorial helps you find the firmware in flash memory and snarf it up to a file for inspection, modification, or whatever else you have planned. We always apprec...