Skip to main content

LED Matrix Becomes Fun Tetris Clock

Sometimes a project is borne simply out of the fact that some interesting parts have been left sitting around too long. Of course, this is as good a reason to build as any other, and can often lead to some interesting results. [Jorj Bauer]’s Tetris Display is one such project.

The project started because [Jorj] had an 8 x 32 WS2812 LED array laying about, and it was high time it got turned into something cool. The resulting display has several features, making it a welcome piece around the home. It can act as a clock, with automatic compensation for daylight savings and brightness control depending on the time of day. It can also serve as a text scroller, and of course, the party piece – it can play Tetris. It all runs on an ESP-01, with a second device acting as a remote to control the game.

Rather than simply being another LED matrix project, [Jorj] put a little flair into things. A font was developed that allowed the time to be displayed in a pixel font composed entirely of Tetris pieces (or tetrominos). This allows the time to be displayed by pieces dropping from the top of the display. The Tetris implementation is solid, too – implementing the proper Super Rotation System that professionals would expect.

[Jorj] reports that this build was inspired by an earlier Tetris Clock featured in these very pages. It’s a tidy piece that we’re sure is a great addition to the mantlepiece. Video after the break.



from Hackaday https://ift.tt/2Lvc77R

Comments

Popular posts from this blog

How To Play Doom – And More – On An NES

Doom was a breakthrough game for its time, and became so popular that now it’s essentially the “Banana For Scale” of hardware hacking. Doom has been ported to countless devices, most of which have enough processing ability to run the game natively. Recently, this lineup of Doom-compatible devices expanded to include the NES even though the system definitely doesn’t have enough capability to run it without special help. And if you want your own Doom NES cartridge, this video will show you how to build it . We featured the original build from [TheRasteri] a while back which goes into details about how it’s possible to run such a resource-intensive game on a comparatively weak system. You just have to enter the cheat code “RASPI”. After all the heavy lifting is done, it’s time to put it into a realistic-looking cartridge. To get everything to fit in the donor cartridge, first the ICs in the cartridge were removed (except the lockout IC) and replaced with custom ROM chips. Some modifica...

The Flexible Permanence of Copper Tape Circuits

Somewhere between shoving components into a breadboard temporarily and committing them to a piece of protoboard or a PCB lies the copper tape method. This flexible Manhattan-style method of circuitry formed the basis for [Bunnie Huang]’s Chibitronics startup, and has since inspired many to stop etching boards and start fetching hoards of copper tape. [Hales] hit the ground running when he learned about this method , and has made many a copper tape circuit in the last year or so. He offers several nice tips on his site that speak from experience with this method, and he’ll even show you how to easily work an SMD breakout board into the mix. Generally speaking, [Hales] prefers plywood as the substrate to paper or cardboard for durability. He starts by drawing out the circuit and planning where all the tape traces will go and how wide they need to be. Then he lays out copper traces and pads, rubs the tape against the substrate to make it adhere strongly, and reinforces joints and laps w...

The Newbie’s Guide To JTAG

Do you even snarf? If not, it might be because you haven’t mastered the basics of JTAG and learned how to dump, or snarf, the firmware of an embedded device. This JTAG primer will get you up to snuff on snarfing, and help you build your reverse engineering skills. Whatever your motivation for diving into reverse engineering devices with microcontrollers, JTAG skills are a must, and [Sergio Prado]’s guide will get you going. He starts with a description and brief history of the Joint Test Action Group interface, from its humble beginnings as a PCB testing standard to the de facto standard for testing, debugging, and flashing firmware onto devices. He covers how to locate the JTAG pads – even when they’ve been purposely obfuscated – including the use of brute-force tools like the JTAGulator . Once you’ve got a connection, his tutorial helps you find the firmware in flash memory and snarf it up to a file for inspection, modification, or whatever else you have planned. We always apprec...